Chronology, mound-building and environment at Huaca Prieta, coastal Peru, from 13 700 to 4000 years ago

Tom D. Dillehay1,2, Duccio Bonavia3, Steven Goodbred4, Mario Pino5, Victor Vasquez6, Teresa Rosales Tham6, William Conklin7, Jeff Splitstoser8, Dolores Piperno9, José Iriarte10, Alexander Grobman11, Gerson Levi-Lazzaris1, Daniel Moreira12, Marilaura Lopέz13, Tiffiny Tung1, Anne Titelbaum14, John Verano14, James Adovasio15, Linda Scott Cummings16, Phillippe Bearέz17, Elise Dufour17, Olivier Tombret17,18, Michael Ramirez19, Rachel Beavins4, Larisa DeSantis4, Isabel Rey20, Philip Mink21, Greg Maggard21 & Teresa Franco1

Renewed in-depth multi-disciplinary investigation of a large coastal mound settlement in Peru has extended the occupation back more than 7000 years to a first human exploitation ~13 720 BP. Research by the authors has chronicled the prehistoric sequence from the activities of the first maritime foragers to the construction of the black mound and the introduction of horticulture and monumentality. The community of Huaca Prieta emerges as innovative, complex and ritualised, as yet with no antecedents.

Keywords: Peru, Holocene, ritual mound, horticulture

1 Department of Anthropology, College of Arts and Science, Vanderbilt University, 124 Garland Hall, Nashville, TN 37235, USA
2 Escuela de Antropología, Facultad de Ciencias Sociales, Universidad Católica de Temuco, Manuel Montt 056, Temuco, Chile
3 Academia Nacional de la Historia, Casa de Osambela, Jr. Conde de Superunda 298, Lima 1, Perú
4 Department of Earth and Environmental Sciences, College of Arts and Science, Vanderbilt University, 5726 Stevenson Center, 7th floor, Nashville, TN 37240, USA

© Antiquity Publications Ltd.
ANTIQUITY 86 (2012): 48–70
http://antiquity.ac.uk/ant/086/am0860048.htm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Introduction
The warming trend at the end of the Pleistocene led to new and generally richer terrestrial and coastal environments that were exploited by human foragers in several regions of the world (Straus et al. 1996). Post-Pleistocene complex hunters and gatherers who practised intensive maritime adaptations and established extensive often sedentary communities are best represented by the Jomon culture in Japan (Habu 2004), the Ertebolle culture in Scandinavia (Miller et al. 2010), the ring-mounds in the south-east of the United States (Thompson & Worth 2010) and the sambaquí mounds in Brazil (Fish et al. 2000). The settlements of these cultures are invariably characterised by mortuary rituals suggestive of social differentiation, and by extensive shell middens that have yielded a wide array of marine and terrestrial species. At different times between ~8000 and 4000 cal BP, some of these communities also practised various degrees of horticulture as evidenced by the appearance of food crops. Like these regions, the Pacific coast from southern Ecuador to northern Chile witnessed the early rise of complex societies, especially in Peru where sedentism and monumental non-domestic architecture appeared by at least 5200 cal BP (Moseley 1975, 1992; Richardson 1981; Bird et al. 1985; Haas & Creamer 2004). Some of these developments are due to the unique ecology of the region, with diverse and abundant maritime resources closely juxtaposed with a long fertile but arid coastal plain, through which rivers descend from the Andean mountains. Others are the result of emerging ideologies adopted by these communities, which built monuments prior to the use of pottery. Associated with these changes was a variety of food and industrial crops (Bird 1948; Pearsall...
2008). Particularly important was cotton for producing fishing nets, textiles and gourds for net floats. One of the early coastal monuments is Huaca Prieta, a large stone and earthen mound measuring $138 \times 62 \times 32$ m, built on the southern point of a remnant Pleistocene terrace overlooking the Pacific Ocean and estuarine wetlands and the delta plain of the Chicama River valley (Bird et al. 1985) (Figure 1).

Huaca Prieta was first excavated by Junius Bird in the 1940s and radiocarbon dated to between ~5302 and 1933 cal BP in the 1950s (Figure 2; Table 1). Based on the large size of the mound, on an abundance of marine resources, wood charcoal, ash and soot, thus the appearance of a black or prieta mound, and on the presence of small stone structures, Bird believed that the site was occupied by sedentary people living in pit-houses. In addition to a marine economy, he documented incipient gardening and social differentiation, as indicated by the remains of several food crops, the uninterrupted accumulation of cultural layers, the presence of room structures, the interment of human burials with grave offerings and a wide variety of material technologies including lithic, gourd, basketry, bone, wood and textile. The most developed technology at the site was cotton weaving and netting (Bird & Mahler 1952). The site's weavers devised sophisticated iconographic styles with various designs. Iconography was also exhibited through incised and engraved gourds, hematite

© Antiquity Publications Ltd.
painting pebbles and recently recovered coral sculptures. A crude lithic industry included grinding stones for processing plants and edge-trimmed pebble flake tools, hammerstones, cores and other implements used for various tasks (Bird et al. 1985: 77–91).

Until now, the broader importance of Bird’s pioneering work at Huaca Prieta has been constrained by few radiocarbon dates and cursory study of the site’s environment, stratigraphy and chronology, architecture and off-mound activity. In 2006 we began an interdisciplinary project at the site to re-examine the previous work and to better understand the relationship between coastal environments, economies and mound building within the site’s changing social and natural landscapes. To date, we have excavated more than 2000m³ in old and new areas of Huaca Prieta, located and explored other domestic sites on the remnant terrace, conducted a survey of Preceramic settlements along the coast of the Chicama River valley and reconstructed the local palaeoecology (Figure 3).

The new work has greatly extended the time span of occupation at the site and increased its significance for the understanding of the development of early societies in Peru. We have documented the site stratigraphy encountered by Bird and the primary refuse of charcoal, ash, burned rock, the remains of numerous marine organisms such as fish, urchins, shellfish, sea lion and porpoise, birds and other fauna, and cultivated plants. We have also obtained numerous radiocarbon dates from intact features and floors and defined several site phases (Table 1), ranging in chronometric age from 13 720–13 260 cal BP for the first human presence, from ~8979–7500 cal BP for a pre-mound occupational phase and from
<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Provenience</th>
<th>δ^{13}C</th>
<th>Conventional radiocarbon</th>
<th>1σ-calibrated age range (BP)</th>
<th>2σ-calibrated age range (BP)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA76975</td>
<td>Unit 2 ext west, upper Stratum 3</td>
<td>-24.4</td>
<td>3535±35</td>
<td>3827–3696</td>
<td>3849–3639</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta233650</td>
<td>Unit 2, lower Stratum 3</td>
<td>-22.2</td>
<td>3700±40</td>
<td>4073–3893</td>
<td>4088–3844</td>
<td>Charred material</td>
</tr>
<tr>
<td>AA76974</td>
<td>Unit 2 ext west, Stratum 5a</td>
<td>-24.2</td>
<td>3588±36</td>
<td>3873–3724</td>
<td>3956–3694</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA76973</td>
<td>Unit 2, Stratum 7a</td>
<td>-24.0</td>
<td>3748±40</td>
<td>4137–3933</td>
<td>4151–3898</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA81925</td>
<td>Unit 2, Stratum 7b</td>
<td>-19.1</td>
<td>3964±41</td>
<td>4418–4259</td>
<td>4511–4159</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA85506</td>
<td>First mound Layer: Unit 2, Stratum 7C-3</td>
<td>-25.4</td>
<td>6641±49</td>
<td>7555–7434</td>
<td>7571–7424</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA76972</td>
<td>Pre-mound occupation (?): Unit 2, Stratum 7C-7 base</td>
<td>-23.5</td>
<td>6797±48</td>
<td>7656–7572</td>
<td>7680–7508</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta233651</td>
<td>Pre-mound occupation: Unit 2, Stratum 8, base</td>
<td></td>
<td>6920±30</td>
<td>7740–7660</td>
<td>7786–7618</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA76977</td>
<td>Unit 3 ext south, Floor 2</td>
<td>-22.8</td>
<td>3530±36</td>
<td>3827–3693</td>
<td>3849–3636</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA76978</td>
<td>Unit 3 ext south, Floor 5a</td>
<td>-19.6</td>
<td>3567±40</td>
<td>3841–3717</td>
<td>3901–3643</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA76979</td>
<td>Unit 3 ext south, Floor 5b</td>
<td>-19.6</td>
<td>3758±40</td>
<td>4142–3978</td>
<td>4216–3901</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Sample no.</td>
<td>Provenience</td>
<td>δ^{13}C</td>
<td>Conventional radiocarbon</td>
<td>1σ-calibrated age range (BP)</td>
<td>2σ-calibrated age range (BP)</td>
<td>Material</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Beta247695</td>
<td>Unit 3, Stratum 8, below Floor 6</td>
<td>-20.8</td>
<td>4000±40</td>
<td>4510–4296</td>
<td>4520–4245</td>
<td>Organic sediment</td>
</tr>
<tr>
<td>Unit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA76970</td>
<td>Unit 7, Floor 1</td>
<td>-25.1</td>
<td>3649±36</td>
<td>3964–3841</td>
<td>4072–3727</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA81916</td>
<td>Unit 8, Tomb 4</td>
<td>-17.2</td>
<td>3534±53</td>
<td>3833–3689</td>
<td>3892–3590</td>
<td>Bone</td>
</tr>
<tr>
<td>Unit 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA81922</td>
<td>Unit 9, Stratum 7a, top</td>
<td>-22.0</td>
<td>3547±40</td>
<td>3829–3705</td>
<td>3876–3640</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA84168</td>
<td>Pre-mound occupation: Unit 9, Stratum 8, base</td>
<td>-22.0</td>
<td>7956±50</td>
<td>8931–8599</td>
<td>8979–8592</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA81923</td>
<td>Unit 10, Base of Structure 2</td>
<td>-25.7</td>
<td>3556±44</td>
<td>3834–3705</td>
<td>3895–3640</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA81919</td>
<td>Unit 10, Floor 4</td>
<td>-26.4</td>
<td>3557±40</td>
<td>3834–3716</td>
<td>3891–3642</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA81929</td>
<td>Unit 12, Ash Stratum 1</td>
<td>-25.2</td>
<td>3441±39</td>
<td>3688–3576</td>
<td>3817–3480</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA81920</td>
<td>Unit 13, Floor 3</td>
<td>-19.7</td>
<td>3810±41</td>
<td>4224–3996</td>
<td>4283–3974</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA81921</td>
<td>Unit 14, Floor 4</td>
<td>-25.1</td>
<td>3508±40</td>
<td>3825–3641</td>
<td>3838–3588</td>
<td>Wood charcoal</td>
</tr>
</tbody>
</table>
Table 1. Continued

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Provenience</th>
<th>δ^{13}C</th>
<th>Conventional radiocarbon</th>
<th>1σ-calibrated age range (BP)</th>
<th>2σ-calibrated age range (BP)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86935</td>
<td>Off-mound domestic Unit 16, Stratum 13-7</td>
<td>-22.6</td>
<td>6310 ± 33</td>
<td>7251–7162</td>
<td>7266–7021</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 20 (Paredones)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86936</td>
<td>Unit 20, Stratum 5B</td>
<td>-23.8</td>
<td>4783 ± 31</td>
<td>5578–5330</td>
<td>5583–5324</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA86937</td>
<td>Unit 20, Stratum 6B-18</td>
<td>-25.8</td>
<td>4849 ± 31</td>
<td>5589–5479</td>
<td>5603–5333</td>
<td>Charred wood</td>
</tr>
<tr>
<td>Unit 21 (Unit 15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86941</td>
<td>Unit 21, Floor 2-3, 16</td>
<td>-10.6</td>
<td>3599 ± 29</td>
<td>3889–3728</td>
<td>3956–3704</td>
<td>Corn cob</td>
</tr>
<tr>
<td>AA86931</td>
<td>Unit 21, Floor 3-2</td>
<td>-25.2</td>
<td>3638 ± 29</td>
<td>3957–3838</td>
<td>3982–3728</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA86946</td>
<td>Unit 21, Floor 9</td>
<td>-11.9</td>
<td>3783 ± 41</td>
<td>4148–3988</td>
<td>4235–3928</td>
<td>Corn cob</td>
</tr>
<tr>
<td>AA75322</td>
<td>Unit 15, Floor 26</td>
<td>-29.4</td>
<td>5018 ± 86</td>
<td>5860–5599</td>
<td>5911–5488</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA85507</td>
<td>First mound layer: Unit 15</td>
<td>-25.6</td>
<td>6522 ± 54</td>
<td>7429–7323</td>
<td>7474–7268</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA75327</td>
<td>Pre-mound occupation: Unit 15, below sunken plaza in mound</td>
<td>-29.5</td>
<td>7226 ± 44</td>
<td>8019–7947</td>
<td>8156–7871</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta290621</td>
<td>Buried surface of Sangamon Terrace</td>
<td>-25.6</td>
<td>11500 ± 50</td>
<td>13403–13294*</td>
<td>13420–13260**</td>
<td>Charred wood</td>
</tr>
<tr>
<td>Beta299536</td>
<td>Buried surface of Sangamon Terrace</td>
<td>-28.3</td>
<td>11800 ± 50</td>
<td>13757–13517*</td>
<td>13794–13459**</td>
<td>Wood</td>
</tr>
</tbody>
</table>

© Antiquity Publications Ltd.
<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Provenience</th>
<th>δ^{13}C</th>
<th>Conventional radiocarbon</th>
<th>1σ-calibrated age range (BP)</th>
<th>2σ-calibrated age range (BP)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 22 (Paredones)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86934</td>
<td>Unit 22, Floor 6</td>
<td>−13.4</td>
<td>4181±34</td>
<td>4809–4570</td>
<td>4821–4527</td>
<td>Charred cob</td>
</tr>
<tr>
<td>Beta263320</td>
<td>Unit 22, Floor 10, Capa 14</td>
<td>−24.5</td>
<td>4590±40</td>
<td>5308–5062</td>
<td>5435–5044</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta263321</td>
<td>Unit 22, Floor 15</td>
<td>−25.6</td>
<td>4790±40</td>
<td>5580–5331</td>
<td>5585–5325</td>
<td>Charred material</td>
</tr>
<tr>
<td>AA86947</td>
<td>Unit 22, Floor 16, Fill 10</td>
<td>−24.0</td>
<td>4898±49</td>
<td>5644–5483</td>
<td>5711–5335</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA83260</td>
<td>Unit 22, Floor 24</td>
<td>−26.0</td>
<td>5750±60</td>
<td>6561–6405</td>
<td>6640–6319</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Unit 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86930</td>
<td>Unit 23, Stratum 3-1</td>
<td>−10.0</td>
<td>1760±29</td>
<td>1690–1557</td>
<td>1697–1539</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA86949</td>
<td>Unit 23, Floor 3-3</td>
<td>−27.1</td>
<td>3467±39</td>
<td>3704–3584</td>
<td>3828–3560</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA86948</td>
<td>Unit 23, Floor 11</td>
<td>−23.5</td>
<td>5059±72</td>
<td>5887–5652</td>
<td>5902–5606</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Bird’s HP-2</td>
<td>Basal mound layer: HP-2 west side of site</td>
<td>−23.8</td>
<td>5110±40</td>
<td>5891–5745</td>
<td>5919–5667</td>
<td>Organic sediment</td>
</tr>
<tr>
<td>Beta233648</td>
<td>Test Pit 2, Bottom</td>
<td>−22.2</td>
<td>4298±230</td>
<td>5260–4439</td>
<td>5462–4152</td>
<td>Charcoal</td>
</tr>
<tr>
<td>Libby-598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bird’s HP-3</td>
<td>HP-3, Stratum 5</td>
<td>−28.0</td>
<td>3394±40</td>
<td>3634–3485</td>
<td>3688–3464</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA86943</td>
<td>HP-3, Stratum 14</td>
<td>−24.6</td>
<td>3806±28</td>
<td>4213–3999</td>
<td>4233–3985</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA86940</td>
<td>HP-3, Stratum 19</td>
<td>−25.6</td>
<td>3875±30</td>
<td>4287–4107</td>
<td>4406–4090</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA81924</td>
<td>HP-3, Stratum 22</td>
<td>−23.5</td>
<td>3687±40</td>
<td>4063–3876</td>
<td>4084–3838</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA81927</td>
<td>HP-3, Stratum 23</td>
<td>−17.3</td>
<td>3728±40</td>
<td>4084–3927</td>
<td>4147–3875</td>
<td>Wood charcoal</td>
</tr>
</tbody>
</table>

© Antiquity Publications Ltd.
Table 1. Continued

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Provenience</th>
<th>δ¹³C</th>
<th>Conventional radiocarbon</th>
<th>1σ-calibrated age range (BP)</th>
<th>2σ-calibrated age range (BP)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA86948</td>
<td>HP-3, Stratum 35</td>
<td>−24.1</td>
<td>5020±35</td>
<td>5830–5598</td>
<td>5848–5585</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA82121</td>
<td>HP-3, Stratum 52 (39), upper part</td>
<td>−</td>
<td>5980±40</td>
<td>6789–6676</td>
<td>6882–6657</td>
<td>Cotton yarn</td>
</tr>
<tr>
<td>AA81907</td>
<td>First mound layer: HP-3, Stratum 52-53, lower part</td>
<td>−23.8</td>
<td>6170±45</td>
<td>7154–6899</td>
<td>7162–6808</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta263318</td>
<td>Pre-mound occupation: Stratum 55</td>
<td>−24.9</td>
<td>7000±50</td>
<td>7830–7703</td>
<td>7927–7673</td>
<td>Charred material</td>
</tr>
<tr>
<td>Beta294021</td>
<td>Pre-mound occupation: Stratum 54</td>
<td>−23.3</td>
<td>7110±50</td>
<td>7946–7840</td>
<td>7979–7752</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA75321</td>
<td>Pre-mound occupation: base HP-3 Stratum 56, P-4</td>
<td>−28.9</td>
<td>7195±45</td>
<td>8009–7933</td>
<td>8040–7847</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>TP-3 (Ext. of HP-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta278233</td>
<td>Test Pit 3, Stratum 2</td>
<td>−25.5</td>
<td>3660±40</td>
<td>3972–3854</td>
<td>4081–3730</td>
<td>Charred material</td>
</tr>
<tr>
<td>TP-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta247696</td>
<td>Test Pit 6, Base</td>
<td>−18.7</td>
<td>3350±40</td>
<td>3571–3464</td>
<td>3823–3483</td>
<td>Charred material</td>
</tr>
<tr>
<td>TP-9-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86944</td>
<td>Test Pit 9-13</td>
<td>−28.1</td>
<td>3334±38</td>
<td>3558–3455</td>
<td>3614–3398</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>TP-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA86947</td>
<td>Test Pit 22, Stratum 10</td>
<td>−24.0</td>
<td>4898±49</td>
<td>5644–5483</td>
<td>5711–5335</td>
<td>Wood charcoal</td>
</tr>
</tbody>
</table>

© Antiquity Publications Ltd.
Table 1. Continued

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Provenience</th>
<th>δ^{13}C</th>
<th>Conventional radiocarbon</th>
<th>1σ-calibrated age range (BP)</th>
<th>2σ-calibrated age range (BP)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta210862</td>
<td>Pre-mound Occupation, Stratum 20</td>
<td>-27.4</td>
<td>9530±50</td>
<td>[11000]–10501</td>
<td>[11000]–10579</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta290620</td>
<td>Test Pit 22, Stratum 25</td>
<td>-28.3</td>
<td>11780±50</td>
<td>13732–13510**</td>
<td>13720–13440**</td>
<td>Wood</td>
</tr>
<tr>
<td></td>
<td>Bird’s 14C samples from HP-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>Test pit 3; Layer D</td>
<td></td>
<td>2966±340</td>
<td>3555–2621</td>
<td>3905–2160</td>
<td>Gourds, chewed fibre, squash stems, cotton, wood, barkcloth</td>
</tr>
<tr>
<td>Beta9286</td>
<td>HP 3, E</td>
<td></td>
<td>3730±300</td>
<td>4422–3634</td>
<td>4845–3272</td>
<td>Gourd (Lagenaria siceraria)</td>
</tr>
<tr>
<td>Beta9288</td>
<td>HP 3, F</td>
<td></td>
<td>3960±100</td>
<td>4510–4157</td>
<td>4784–3989</td>
<td>Gourd (Lagenaria siceraria)</td>
</tr>
<tr>
<td>Beta9287</td>
<td>HP 3, J</td>
<td></td>
<td>3270±100</td>
<td>3569–3343</td>
<td>3692–3169</td>
<td>Gourd (Lagenaria siceraria)</td>
</tr>
<tr>
<td>318b</td>
<td>Test pit 3; Layer J</td>
<td></td>
<td>3550±600</td>
<td>4569–3005</td>
<td>5446–2344</td>
<td>Twigs and treated huaran go wood</td>
</tr>
<tr>
<td>362</td>
<td>Test pit 3; Layer K</td>
<td></td>
<td>4044±300</td>
<td>4845–3996</td>
<td>5298–3648</td>
<td>Carbonised cattail roots</td>
</tr>
<tr>
<td>315</td>
<td>Test pit 3; Layer M</td>
<td></td>
<td>3572±220</td>
<td>4088–3485</td>
<td>4423–3267</td>
<td>Shell</td>
</tr>
<tr>
<td>316</td>
<td>Test pit 3; Layer M</td>
<td></td>
<td>4380±270</td>
<td>5302–4539</td>
<td>5590–4158</td>
<td>Misc. woody plants</td>
</tr>
<tr>
<td>313</td>
<td>Test pit 3; Layer Q</td>
<td></td>
<td>4257±250</td>
<td>5263–4411</td>
<td>5462–3999</td>
<td>Misc. woody plants</td>
</tr>
<tr>
<td>Geological dates mentioned in text</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA83255</td>
<td>Swash-laminated shoreface sands</td>
<td>-21.1</td>
<td>2767±90</td>
<td>2924–2746</td>
<td>3077–2505</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>Beta244172</td>
<td>Muddy back-dune swale</td>
<td>-19.1</td>
<td>2820±80</td>
<td>2950–2778</td>
<td>3078–2742</td>
<td>Organic-rich soil</td>
</tr>
<tr>
<td>AA83252</td>
<td>Sandy burned cultural horizon</td>
<td>-25.8</td>
<td>3521±49</td>
<td>3828–3645</td>
<td>3868–3610</td>
<td>Wood charcoal</td>
</tr>
</tbody>
</table>
Table 1. Continued

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Provenience</th>
<th>$\delta^{13}C$</th>
<th>Conventional radiocarbon</th>
<th>1σ-calibrated age range (BP)</th>
<th>2σ-calibrated age range (BP)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA81933</td>
<td>Swash-laminated shoreface sands onlapping Huaca Prieta</td>
<td>-24.7</td>
<td>3598 ± 40</td>
<td>3893--3725</td>
<td>3964--3696</td>
<td>Wood charcoal</td>
</tr>
<tr>
<td>AA83258</td>
<td>Carbonate lagoon sediments</td>
<td>-6.0</td>
<td>5739 ± 51</td>
<td>6538--6404</td>
<td>6633--6321</td>
<td>Non-marine gastropod</td>
</tr>
<tr>
<td>OS-77302</td>
<td>Organic layer interbedded within Carbonate lagoon sediments</td>
<td>-25.6</td>
<td>6180 ± 35</td>
<td>7155--6939</td>
<td>7158--6901</td>
<td>Plant matter</td>
</tr>
<tr>
<td>OS82737</td>
<td>Organic layer interbedded within Carbonate lagoon sediments</td>
<td>-29.9</td>
<td>6500 ± 30</td>
<td>7421--7326</td>
<td>7428--7279</td>
<td>Plant matter</td>
</tr>
<tr>
<td>OS77304</td>
<td>Organic layer interbedded within Carbonate lagoon sediments</td>
<td>-24.1</td>
<td>6500 ± 45</td>
<td>7422--7324</td>
<td>7432--7269</td>
<td>Plant matter</td>
</tr>
<tr>
<td>OS77303</td>
<td>Organic layer interbedded within Carbonate lagoon sediments</td>
<td>-27.7</td>
<td>6600 ± 35</td>
<td>7483--7425</td>
<td>7518--7416</td>
<td>Plant matter</td>
</tr>
</tbody>
</table>

All dates calibrated using shcal04 (McCormac et al. 2004).
[] = calibrated range impinging on end of calibration data set.
* Bird's corresponding layers in HP-3 are based on study of his photographs, notes, and profile drawings.
** Calibration done on curve other than shcal04.
Figure 3. Map of the remnant terrace showing the location of investigations at Paredones and Huaca Prieta. HP: excavations by J.B. Bird; TP: test pit; GU: area of geophysical survey; U: excavations undertaken in the present campaign.
Chronology, mound-building and environment at Huaca Prieta, coastal Peru

~7555–4510 cal BP for subsequent mound-building phases. Our findings also indicate that the site was first occupied by maritime foragers. After ~7500 cal BP, activity shifted about 50m north and the first mound layers, associated with burning and mortuary rituals, were built on the southern end of the terrace.

Method

During five recent field seasons, we recut, profiled and studied all of Bird’s prior pits on the mound (Bird et al. 1985: 26), particularly his HP-2 and HP-3 units (Figure 4), taking more than 15 000 measurements of stratigraphic profiles in 60 different archaeological excavations, three with cultural deposits of 22–32m. We selected several new areas for extensive and deeper excavations, working with large teams of professional archaeologists and experienced local workers. Specialists such as botanists, geneticists, malacologists and geologists joined the research team for various periods of time to extract specific data sets.

In total, we excavated 31 block units ranging in size from 2 × 4m to 12 × 14m, 30 test pits ranging between 1 × 2m and 2 × 3m, more than 25 geological trenches and hundreds of sediment cores on and off the site. Many of the test pits and small block units were exploratory in nature, seeking to define the mound and off-mound stratigraphy, function and chronology (Figure 3). Given the depth and size of the mound, which covered or destroyed the early occupational deposits to a depth of 8–32m, we obtained only three terminal Pleistocene and six pre-mound Early Holocene radiocarbon dates (Units 2, 9, 15 [21], HP-2, HP-3 and TP-22). Additionally, five large 20 × 20m block units were subjected to geophysical mapping for purpose of testing deep subsurface features. Thus, the majority of our work was located in areas not probed by Bird, such as the lower and upper south side of the site and deposits buried underneath later Cupisnique and Moche mounds (~3500–1500 cal years ago) located immediately north of Huaca Prieta.

We also carried out block excavations at Paredones, a smaller 30 × 70m mound located 1km north of Huaca Prieta (Figure 3). Paredones dates between ~6700 and 4200 cal BP and presents a 6m-deep cultural sequence associated with domestic occupation. The stratigraphy at both Huaca Prieta and Paredones is intact, with almost impenetrable cement-like floors and floor fills. Minimal disturbance resulted from occasional architectural construction at Huaca Prieta.

In this paper we focus on the dating of the sequence. Summary reports on the floodplain deposits, mound stratigraphy, architectural phases, subsistence economy and off-mound domestic sites (including Paredones) will be found in the supplement online (SOL) at http://www.antiquity.ac.uk/projgall/dillehay331.

Holocene environmental history

Our recent palaeoecological studies indicate that the environs of Huaca Prieta are defined by the interface of several geo-climatic settings, which present diverse natural resources (Dillehay et al. 2010). Geological evidence reveals an intimate association with fertile deltaic wetland systems that were juxtaposed with diverse semi-arid lowlands and coastal estuarine and marine settings. Located at these ecological junctions, settings like that of Huaca Prieta were

© Antiquity Publications Ltd.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
susceptible to environmental changes forced by various phenomena: local (e.g. river avulsion, earthquakes), regional (e.g. El Niño), global (e.g. sea-level change) or anthropogenic (e.g. land use) (Bird, R. 1983; Sandweiss et al. 1999, 2009; Wells 1999). The earliest coastal plain formation near the site is recorded by unique algal carbonate (Charophyta) and interbedded organic sediments that indicate the development of a widespread wetland-fringed, estuarine lagoon by 7457 cal BP (OS-77303, see Table 1). This setting persisted until 6470 cal BP (AS-83258, see Table 1), after which the onset of El Niño floods began to infill the lagoon with riverine silts. This major environmental transformation from open-water lagoon to a well-drained floodplain occurs over \(\sim 2000 \) years and is largely complete by 4500 cal BP. Floodplain deposition, largely through El Niño flood events, remains a continuous but episodic process up to the present (Sandweiss et al. 1999) (SOL 1).
A prominent feature across the relatively flat and narrow coastal plain of the Chicama River valley are several small drainages that cross-cut the plain as they descend from the Andean foothills to the ocean. These drainages change depending on the level of the water table and El Niño events, becoming larger when heavy rains in the highlands increase their load. When these drainages reach the ocean and mix with its salty tidal water, numerous estuary systems are formed between 2 and 20km north of Huaca Prieta. These estuaries are generally narrow and 2–7km long, running perpendicular to the seashore, although they may connect to lagoons that are elongated and parallel to the coast. Sand dunes created by the sediments dumped by rivers and shaped by the action of waves separate these wetland systems from the ocean. The wetlands provide a wide variety of edible plant and animal life, in addition to various species of reeds used to make mats, baskets and other utilitarian items. Today, people grow crops along the edges of the wetlands where the soils are rich and humid year round (Figure 2).

Phasing and dating at Huaca Prieta

In total, more than 150 radiocarbon dates were obtained from 60 mound and off-mound excavations and from various geological cuts and cores (Table 1). Not all floor and use episodes were radiocarbon dated, which would require more than 1000 chronometric measurements (see SOL). However, the deeper stratigraphic cuts were dated from the top to bottom, as shown in Figures 5–7 for Units 2, 15/21 and HP-3. All radiocarbon dates from Huaca Prieta and Paredones were taken on single chunks of wood charcoal, maize and cotton textiles recovered from features embedded in floors. Unfortunately, not all excavated strata contained single chunks embedded in floors or features. With the exception of fragments of maize and other organic debris, which will be detailed in later publications, all radiocarbon dates are on wood charcoal and cotton. No radiocarbon samples were taken from fills and middens or from marine shells. Given the different organic materials dated by four different laboratories over a period of six decades, nearly all dates agree and overlap chronologically and stratigraphically at the 1σ calibrated age range. There is also agreement and stratigraphic alignment between Bird’s 14C dates and his schematic profile of the north to south oriented HP-3 trench and our 14C dates and stratigraphy in this same unit (Bird et al. 1985: 51–8) (Figure 5).

Our excavations at the site have defined limited terminal Pleistocene and Early Holocene occupational phases followed by four successive mound-building phases (Figures 8 & 9). The terminal Pleistocene materials are buried in the upper surface deposits of the ancient terrace upon which the mound sits at Huaca Prieta. Because these deposits are deeply buried beneath the mound, we have not yet fully studied the spatial extent and geological setting of this occupation. To date we have recovered simple edge-trimmed pebble flakes, several bone remains of fish and sea lion, and fractured shellfish valves from these deposits, which are dated between 13 720 and 13 260 cal BP (Table 1).

The mound sequence has been resolved in five phases. Phase I is dated ~9000–7500 cal BP and is associated with maritime foragers and incipient gardeners intermittently occupying around 80m of the lower east side of the Sangamon terrace near the banks of the brackish water, estuarine lagoon (see Table 1; Figures 3 & 4, Units 2, 9 & 15/21, HP-3 & TP 22). © Antiquity Publications Ltd.
Figure 5. Profile view of a section of the west wall in the north-south trench (Bird's HP-3) showing the lower stratigraphic levels at the north end of Huaca Prieta, the stratigraphic location of the Phase IV-V ramp addition, and the combined radiocarbon date locations of Bird's and our excavations in the basal pre-mound and lower mound layers in this sector of the site. The numeration of strata in this unit does not follow a progressive sequence. Those strata in the west wall that correspond with previously numbered strata in the east wall of the trench were given the same number, thus resulting in some strata with higher numbers, assigned by our work, overlying or underlying lower or higher numbers, respectively. Dates with prefix of 'Layer...' are radiocarbon dated strata from Bird's work at the site (Bird et al. 1985: figs 20 & 33). All dates are given at 1σ calibration years before present. Radiocarbon laboratory numbers beginning with A are from the University of Arizona, with B from Beta Analytic and with L are from Willard Libby's radiocarbon laboratory in the 1950s. The haystacking construction technique is best represented by strata 54, 53, 39, 48, 22 and 23.

No architecture was detected for this phase. Phase II is dated between ~7572 and 6538 cal BP and represents the first mound construction stage. We estimate that the mound during this phase minimally measured ~5m high, ~25m wide and ~25–35m long and consisted of several cobblestone and soil layers. In Units 15/21 and HP-3, the first layers are dated between 7429 and 6899 cal BP, with younger and older dates stratigraphically bracketing these layers, respectively. In Unit 2, the first layer is represented by stratum 7C-2, which we have not dated due to the absence of datable charcoal (Figure 6). However, this layer overlies stratum 7C-3, which is AMS dated to between 7555 and 7434 cal years ago, suggesting the former probably dates to at least ~7000 cal years ago. The current evidence suggests that the earliest mound layers were placed on the south-east flank and crest of the ancient site.
Figure 6. Profile view of Unit 2 showing the pre-mound occupational layers and the initial mound and later strata. All dates are given at 1σ calibration years before present. Radiocarbon laboratory numbers beginning with A are from the University of Arizona and with B from Beta Analytic. The haystacking construction technique is represented by layers 7b, 7b2, 6 and 5b-1.
terrace near the shoreline of the lagoon (Table 1, Units 2, 15/21 & HP-3; and see Figure 3 and SOL 2). From there, the mound appears to have gradually spread to the north and west along this flank, with later construction layers reaching to the western edge of the terrace in the vicinity of Bird’s HP-2 pit. The use of space along the eastern flank and the crest of the terrace eventually became more restricted by the increasing steeper sloping sides of the mound. No stone room foundations were recovered for this phase, though a few postholes and cane poles were excavated suggesting the construction of perishable structures.

The mound building phases, beginning with Phase II, did not develop from a gradual accumulation of occupation midden but from deliberate and gradual, planned mounding over a period of ~3000 years. The beginning points of the individual mounding phases are represented in the form of haystacking strata whereby a basal ring or layer of shingled cobblestone berms are laid out and angled to define the outer limits of the structure and to provide an architectural footing for the space inside to be infilled by floors and floor fills (Figure 7).

During Phase III the focus of mound construction shifted more to the crest and the western edge of the terrace (Figure 3; Table 1, Units 2, 15/21, HP-2, HP-3). Phase III dates between ~6538 and 5308 cal BP and is characterised by the addition of more artificial layers, several small stone-faced, terraced rooms placed along the eastern and western slopes of the mound and, at the end of this phase, the lower floors of a circular sunken pit (Figures 7, 8 & 9: IIIa) on the south side, and the lower part of a stone retention wall on the north-east side (see Figure 4 and SOL 3). These structural features are spatially and architecturally conjoined, suggesting simultaneous planned construction and use across the entire upper surface of the mound at this time. These features began to give the mound a stepped platform-like form. During this phase, the mound expanded to ~8–10m in height in some places and ~80m in length.

Phase IV dates from ~5308–4107 cal years ago, when the mound spread over a more extended area of old and new ground and increased in height (Figures 8 & 9; Table 1, all units). Phases III and IV are separated by a yellowish clay cap ~25cm thick placed over most of the mound. Further additions during this phase were the first layers of a ramp built on the east side, the upper portion of the retention wall and the stepped structures in the sunken plaza (Figures 4, 8 & 9: IIIb) (see SOL 3). The ramp addition is ~40m long and ~35m wide and characterised by a series of thick cobble stone berm layers and by intervening floors built over and sealing the retention wall and the first construction phases of the mound. Later the foundations of the ramp rested directly upon the eastern edge of mound layers built during Phase III. The mound during Phase IV was roughly the size it is today, although a few new layers were added in Phase V.

During Phase V the steep sloping flanks of the mound to both the east and west were used less, with most activity now limited to the flat crest of the structure. It dates between ~4107 and 3455 cal BP when, during the early part of this phase, cobblestone burial chambers were built along the upper rim of the sunken pit and on the top of the mound. More layers were added to the ramp, which eventually covered and sealed the retention wall. By ~4000–3800 cal BP the Preceramic use of the site terminated. People of later ceramic cultures, dating from the Cupisnique to Inca periods (~3500–600 cal years ago) carried out rituals and buried their dead on the top of the mound.
Figure 7. Plan and profile views of the circular sunken plaza showing stepped-rooms and platforms and radiocarbon dated stratigraphy in Units 15 and 21. All dates are given at 1σ calibration years before present. Radiocarbon laboratory numbers beginning with A are from the University of Arizona and with B from Beta Analytic.
Figure 8. Mosaic of the pre-mound and mound building Phases I–V at Huaca Prieta. Phase I shows the pre-mound occupation area on the lower east side of the Sangamon terrace. Phases II–V reveal the sequential development of the mound from a small, low hummocked structure to a flat-top pyramid with a sunken plaza and ramp.

Figure 9. Schematic profile of the pre-mound occupational and mound building phases at Huaca Prieta.
Discussion

Huaca Prieta was a place where several important architectural, technological and artistic innovations took place. The rich coastal environment of the site continuously supported a mixed maritime, wetland and agriculture economy that gave rise to one of the earliest developments of cultural complexity in the Americas (see also SOL 4). Complexity is evidenced not only in the textile and gourd technology, iconography, burial chambers, mound architecture and mixed economy of Huaca Prieta, but in the growth and density of the Preceramic population in the diverse littoral environment north of Huaca Prieta on the Chicama Valley.

Huaca Prieta is enigma in Andean archaeology because it currently has no known antecedents, either on the ancient terrace (see SOL 5) or further afield. Its complexity lies in its form, function and location. The haystacking construction technique, the circular sunken plaza and retention wall, and the multiple agglutinated rooms of the mound impart a sense of site planning as evidenced at other public monuments during the late Preceramic period (c. 5000–4500 cal BP), such as Alto Salaverry, Cerro Ventarrón, Sechin Bajo, Aspero, Bandurria and others along the north and central coast of Peru. However, the architecture, stratigraphy and mortuary remains evidenced for Phases II and III are different from the staircases, ramps and maze-like room construction of the late Preceramic platform monuments at sites such as Sechin Bajo, Caral, Caballeto and Cerro Lampay located farther inland in coastal valleys farther south (Moseley 1975; Shady et al. 2001; Haas & Creamer 2004; Fuchs & Briceno 2006; Alva 2010), suggesting different activities. The inland sites do not exhibit large numbers of human burials, extensive soot layers and burning, isolated retention walls or the stone- and earth-layered mound, as seen at Huaca Prieta and Paredones. On the other hand, Phases II and III at Huaca Prieta are not associated with large platform structures, suggestive of more formalised, non-mortuary architecture and activity. Feasting associated with burned offerings and probably mortuary rituals appears to have been a primary activity at Huaca Prieta. It was not until Phases IV and V, when the agglutinated rooms and burial chambers on top of the mound and the ramp were added, that Huaca Prieta appeared more typical of other coastal monuments. None of these early coastal sites provide concrete evidence of permanent elites or authoritative figures.

The archaeological record and particularly the age and construction of the mound at Huaca Prieta contribute to a growing body of evidence indicating that the Early to Middle Holocene period in the Central Andes was a complex mosaic of different economies and social forms. For instance, in south-west coastal Ecuador (Piperno & Stothert 2003) and the western montane slopes of northern Peru (Piperno & Dillehay 2008; Dillehay et al. 2008; Dillehay 2011), mixed farming and foraging societies existed by at least 10 000–9000 cal BP. In the Andean highlands from Peru and Bolivia to northern Chile and Argentina, economies focused on camelid husbandry and high-altitude crops were developed by at least 6000 cal BP (Aldenderfer 1988; Bonavia 2008). Additional research will continue to reveal that the origins of Andean civilisation have several interrelated regional roots, each characterised by different social and economic conditions. In our perspective, a critical threshold was crossed when these societies moved beyond the domestic context to include planned sedentary communities and a formalised and structured public life. Not
only did these societies establish social complexity and public monuments, but they also initiated important environmental changes such as extensive landscape modification and the domestication and spread of plants and animals that eventually led to the development of early states in the Andes.

Acknowledgements

We wish to thank the Instituto Nacional de Cultura (INC), Lima, Peru for granting us the permission to work at Huaca Prieta. We are grateful to Cesar Galvaz and Jesus Briceño (INC, Trujillo) for their support. Financial support for this project came from the National Science Foundation, National Geographic Society and Vanderbilt University. Additional support was provided by the Lupinski and O’Leary families. We also thank Marshall Summar and Jessica Blair of the Vanderbilt University Medical Center for genetic analysis. The first author is grateful to the Department of Anthropology at the American Museum of Natural History for granting permission to study Junius B. Bird’s notes and photographs for Huaca Prieta, as well as the artefacts he recovered from the site.

References

BONAVIA, D. 2008. The South American camelids (Cotsen Institute of Archaeology monographs 64). Los Angeles (CA): Cotsen Institute of Archaeology at UCLA.

© Antiquity Publications Ltd.
Chronology, mound-building and environment at Huaca Prieta, coastal Peru

Received: 19 April 2011; Accepted: 20 June 2011; Revised: 27 June 2011

© Antiquity Publications Ltd.